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INTRODUCTION

ABSTRACT

Background: Cancer cells develop multidrug resistance after receiving
fractionated ionizing radiation. However, the mechanisms underlying this
phenomenon remain unknown. This study aimed to investigate the role of
platelet/endothelial cell adhesion molecule 1 (PECAM-1), which was induced
by ionizing radiation, in overcoming cisplatin resistance of nasopharyngeal
carcinoma (NPC) cells. Materials and Methods: Human NPC cell line CNE1 was
subjected to fractionated ionizing radiation to obtain a subline with the
phenotype of multidrug resistance (designated as CNE1/R). PECAM-1 gene
expression in CNE1/R cells was knocked down by stable transfection of
pSilencer plasmid carrying specific small hairpin RNA. The transcripts of
PECAM-1 and multidrug resistance gene 1 (MDR1) were analyzed by reverse
transcription—polymerase chain reaction, and their encoding proteins were
detected by Western blot analysis. The in-vitro viability of tumor cells was
examined with MTT assay and flow cytometry analysis. The tumor growth in
xenograft mice was determined by measuring tumor weights. Results: The
transcript and protein levels of PECAM-1 and MDR1 were concomitantly
upregulated in CNE1 cells subjected to ionizing radiation. The inhibition of
PECAM-1 expression with small hairpin RNA reduced the levels of MDR1
transcript and its encoding protein, P- glycoprotein. Furthermore, targeting
PECAM-1 not only enhanced the sensitivity of irradiated CNE1 cells to
cisplatin-mediated cell cytotoxicity in-vitro but also resulted in tumor
regression in-vivo. Conclusions: An increased PECAM-1 level in CNE1 cancer
cells subjected to ionizing radiation contributed to cisplatin resistance via the
upregulation of MDR1 expression. Thus, targeting PECAM-1 might help
overcome drug resistance induced by ionizing radiation in CNE1 NPC cells.

Keywords: Drug resistance, fonizing radiation, MDR1, nasopharyngeal carcinoma,
PECAM-1.

high metastatic tendency. The common
therapeutic strategy for patients with advanced

Nasopharyngeal carcinoma (NPC) is a special
type of head and neck cancer with high
incidence in Southeast Asia and China. Early
diagnosis and surgical resection of NPC are
difficult because of its deep-seated location and

NPC employs a combination of ionizing radiation
and chemotherapy (1.2). Although the modality of
cisplatin combined with fractionated
radiotherapy has increased the survival rate of
patients with NPC, the initial efficacy of the
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combined chemo-radiotherapy is often weak
because of irradiation-induced multidrug
resistance in tumor cells (4.

The mechanisms by which tumor cells
develop multidrug resistance after radiotherapy
are not fully understood. A number of studies
indicated that multidrug resistance gene 1
(MDR1) and its protein product, P-glycoprotein
(P-gp), is likely to be the major player mediating
drug resistance related to radiotherapy (. 0.
Increased MDR1 mRNA and P-gp protein in
CNE1 human NPC cell line correlated with
cisplatin resistance after fractionated ionizing
irradiation (7). Despite the prominent linkage
between multidrug resistances associated with
radiotherapy and increased MDR1 level, the
mechanisms underlying the regulation of MDR1
expression by ionizing remains unclear. An
increased MDR1 level was detected in irradiated
CNE1 cells, which correlated with the
upregulation of platelet/endothelial cell
adhesion molecule 1 (PECAM-1), using
polymerase chain reaction (PCR) array .
Therefore, it was postulated that PECAM-1
might be involved in controlling radiotherapy-
related drug resistance.

PECAM-1, also known as CD31, is a 130-kDa
glycoprotein belonging to the immunoglobulin
superfamily. PECAM-1 is found mainly on
platelets, vascular endothelial cells, and several
types of leukocytes such as monocytes,
neutrophils, and T cells. It mainly serves as an
adhesion molecule that facilitates leukocyte
transmigration, angiogenesis, and integrin
activation (810). Studies examining PECAM-1
expression in tumor cells also demonstrated a
high frequency of PECAM-1 on a variety of
malignant cells derived from hematopoietic cells
and malignant vascular tumors (11-13), PECAM-1
expression has also been detected in cells from
several types of solid tumors, including breast
cancer, colon carcinoma, cervical carcinoma,
prostate adenocarcinoma, head and neck
squamous carcinoma, and melanoma (1416,
Clinical studies also indicated a close
relationship between PECAM-1 expression and
cancers.

A recent study identified increased PECAM-1
expression as a prognostic biomarker in the
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early stage of laryngeal squamous cell carcinoma
(7)., Another report revealed that the
upregulation of genes related to angiogenesis,
including PECAM-1, had relevance to brain
metastasis in patients with lung cancer and
melanoma (18), Moreover, accumulating evidence
demonstrated that PECAM-1 functioned not only
as a regulator of inflammatory response but also
as a major coordinator of multiple signaling
pathways controlling cell survival and apoptosis.
The emanated signals following PECAM-1
ligation have been implicated in the activation of
Ras/Raf/MEK/ERK pathway and PI3K /Akt)
signaling pathways, leading to increased
expression of Bcl-2 and Bcl-X and decreased
expression of Bax (1921), All these studies
suggested an important role of PECAM-1 in
controlling cellular apoptosis. However, the
impact of PECAM-1 on the acquisition of
multidrug resistance of tumor cells treated with
ionizing radiation has not been explored.

The aims of the present study were to
confirm the role of PECAM-1 in increasing MDR1
expression in CNE1 cell line with multidrug
resistance induced by irradiation, and to test the
potential effect of targeting PECAM-1 on the
cisplatin sensitivity of CNE1 cells subjected to
ionizing radiation in both in-vitro and in-vivo
settings.

MATERIALS AND METHODS

Cell culture and treatment

The human NPC cell line CNE1 was obtained
from the Chinese Academic Cell Bank (Beijing,
China) and cultured at 37°C with 5% COzusing
RPMI1640 medium supplemented with 10%
fetal bovine serum and Pen/Strep antibiotics.
The CNE1 cells were irradiated every other day
with a Varian 2300 C/D linear accelerator
(Varian, Darmstadt, Germany) using 6-MV
X-rays, 2 Gy each time, until the cumulative dose
was up to 50 Gy. After irradiation, the cells were
harvested weekly to examine the levels of MDR1
mRNA for seven consecutive weeks, and the cells
with maximum MDR1 transcript were further
screened with limiting dilution assay. A CNE1
subline with both phenotypes of a high level of
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MDR1 expression and cisplatin resistance was
cloned and designated as CNE1/R as described
previously (7).

RNA isolation and reverse transcription-PCR

Total RNA was extracted using TRIzol reagent
(Invitrogen, NY, USA) based on the
manufacturer’s protocol, followed by cDNA
synthesis with Moloney Murine Leukemia Virus
Reverse Transcriptase (Promega, WI, USA). All
primers used for PCR in this study were
synthesized by Takara Biotechnology (Dalian,
China). The sequences of the primers were as
follows: PECAM-1: 5'-ACCAAGATA
GCCTCAAAGTC-3' (forward), 5'-
TTCACCCTCAGAACCTCAC-3' (reverse); MDR-1:
5'-GGTGCTGGTTGCTGCTTACA-3' (forward), 5'-
TGGCCAAAATCACAAGGGT-3" (reverse); and
B-actin: 5'-CGTGACATT  AAGGAGAAGCTG-
3' (forward), 5'-CTAGAAGC ATTTGCGGTGGAC-
3' (reverse). PCR products were resolved by 1%
agarose gel electrophoresis and photographed
with a gel imaging system (Syngene GBOX, UK).
The semi-quantitative analysis was based on the
densitometry measurement of target bands with
NIH Image] software.

Real-time quantitative reverse transcription
(RT)-PCR (qRT-PCR) was performed using the
same primers as earlier with SYBR Premix Taq
reagent (Takara Biotechnology, Dalian ,China) in
iQ5 quantitative PCR machine (Bio-Rad, CA,
USA). The relative levels of target gene
expression were normalized to f-actin and
calculated based on the 2-2ACT method.

Protein extraction and Western blot analysis
Whole-cell proteins were extracted with
radioimmunoprecipitation assay (RIPA) buffer
supplemented with protease inhibitor cocktails
(Roche, Mannheim, Germany). Fifty micrograms
of proteins from each sample were separated by
SDS-PAGE electrophoresis and transferred onto
a polyvinylidene fluoride (PVDF) membrane.
The membrane was blocked with 5% nonfatty
milk and was probed with primary antibodies
against human PECAM-1 or P-gp (Abcam, MA,
USA) overnight at 4°C and then incubated with
HRP-conjugated secondary antibody for 1 h at
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room temperature. The signals of the target
protein were revealed using enhanced
chemiluminescence reagent (TransGen Biotech,
Beijing, China) and visualized with a
luminescence  imaging  system  (Syngene
GeneGnome XRQ, UK). Densitometry analysis of
each specific protein band was performed using
NIH Image] software, and the protein levels
were expressed as the ratio of normalized
densities of target proteins in tested groups to
those in the relevant control group.

Construction of plasmid carrying shRNA

PECAM-1-specific ~small hairpin siRNA
(shRNA) was synthesized based on the
pre-selected sequence of siRNA targeting
PECAM-1 and subcloned into a pSilencer2.1-neo
shRNA expression vector at BamH1 and HindIll
sites. The pSilencer2.1 plasmid was provided by
Tianjin SaierBio (Tianjin, China), and all other
reagents to construct the recombinant plasmids
were purchased from Takara Biotechnology
(Dalian), including restriction enzymes, DNA,
and relevant kits. The whole sequence of shRNA
targeting human PECAM-1 was as follows:
5'-GATCCGCAGATACTCTAGAA CGGAATTCAAGA
GATTCCGTTCTAGAGATCTGAATTTTTTGGAAA-
3" (sense); 5'-AGCTTTTCCAAAAA TTCAGA-
TACTCTAGAACGGAATCTCTTGAATCCGTTCAGA
GTATCTGCG-3’ (antisense). Successful ligation
and correct sequence were confirmed by
enzymatic digestion analysis and DNA
sequencing, respectively.

Screening clones of CNE1 cells stably
expressing PECAM-1 shRNA

CNE1/R cells were transfected with either a
pSilencer empty vector or pSilenser-PECAM-1
shRNA plasmid using Lipofectamine 2000
reagent (Invitrogen, NY, USA). The transfected
cells were selected with G418 for 2 weeks, and
the survival cells were further screened by the
limiting dilution method in the presence of
G418. The «cell clone of CNE1/R stably
expressing PECAM-1 shRNA was designated as
pSilencer-siPECAM-1-CNE1/R, while the cell
clone with pSilencer empty vector was
designated as pSilencer-CNE1/R.
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Cell proliferation and apoptosis

Both CNE1/R cells transfected with either
PECAM-1 shRNA or control vector were
incubated with a medium containing different
doses of cisplatin (0.06-1.5 ug/mL) for 24 h and
then subjected to cell viability assays. Cell
proliferation was measured using the MTT
(Sigma, USA) assay. The apoptotic cell death was
assessed by staining the cells with an Annexin V
-FITC/PI  cell apoptosis detection kit
(Invitrogen) followed by flow cytometry

analysis (FACS101, BD Bioscience, CA, USA)
following the manufacturer’s protocols.

Animal studies

For in-vivo studies, 6- to 8-week-old BALB/c
athymic nude mice were purchased from the
Animal Center of Dalian Medical University and
kept in the feeding room of the university’s
specific-pathogen-free ~ (SPF) facility.  All
procedures of animal work were approved by
the Institutional Animal Care and Use
Committee of Dalian University (registration
number: 201308011, Aug. 15, 2013). Twenty-
four mice were randomly divided into three
groups and inoculated subcutaneously with
CNE1/R cells stably transfected with different
plasmids  (pSilencer-PECAM-1  shRNA or
pSilencer empty vector) or no plasmid. Each
mouse was injected with 2 x 106 cells in 100 pL
of PBS, and tumor formation was monitored.
Then, the mice in each group were further
divided into two subgroups administered with
either cisplatin (6 mg per 10 g body weight) or
PBS intraperitoneally at a 4-day interval for 4
weeks. After completing the treatment, all mice
were euthanized, and the entire tumor tissues
were excised, weighed, and processed for
histological examination and protein extraction.

Immunohistochemistry staining
Paraffin-embedded tumor tissues were
sectioned at 4-uM thickness. For PECAM-1 and P
-gp immunostaining, the tissue sections were
first rehydrated and incubated with 3% H20-
solution to block endogenous peroxidase activity
and then subjected to antigen retrieval by
boiling the slides in 10 mM citrate buffer,
followed by blocking with 5% BSA for 1 h at
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room temperature. The slides were incubated
with appropriately diluted rabbit anti-human
PECAM-1 or P-gp antibodies (Abcam) at 4°C
overnight and then washed and incubated with
HRP-conjugated secondary antibody for 30 min
at room temperature. The positive reaction
was revealed by incubation with
3,3'Diaminobenzidine (DAB) substrate, followed
by counterstaining with hematoxylin.

Statistical analysis

The quantitative data were expressed as
mean + SD. The data were analyzed by one-way
ANOVA, and Bonferroni correction was used for
multiple paired comparisons with SPSS17
software. A P value <0.05 indicated a statistically
significant difference.

RESULTS

Increased MDR1 level in irradiated CNE1 cells
correlated with PECAM-1 upregulation

Fractionated ionizing irradiation induced a
concomitant upregulation of MDR1 and
PECAM-1 mRNA in CNE1 cells. The present study
sought to confirm the correlation between
PECAM-1 and MDR1 at both transcription and
protein levels. Total RNA and whole-cell proteins
were extracted from CNE1/R cells derived from
a CNE1 clone, stably expressing an increased
MDR1 transcript after receiving irradiation. The
RT-PCR assay showed that the mRNA level of
MDR1 and PECAM-1 was, respectively,
three- and twofold higher in CNE1/R cells
compared with nonirradiated parental CNE1
cells (figure 1A). Accordingly, the protein
expression of P-gp and PECAM-1 increased up to
four- and threefold, respectively, in CNE1/R
compared with CNE1 cells (figure 1B). These
results confirmed and extended a previous
observation of concurrent upregulation between
MDR1 and PECAM-1 in CNE1l tumor cells
receiving ionizing radiation.

Silencing PECAM-1 inhibited the expression of
MDR1 mRNA and P-gp protein

A recombinant pSilencer plasmid was
constructed to deliver PECAM-1 shRNA and cell
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clones stably transfected with either empty
vector or plasmid carrying PECAM-1 shRNA to
investigate any cause-and-effect connection
between PECAM-1 and MDR1 expression. Using
quantitative RT-PCR, an 80% downregulation of
PECAM-1 mRNA was detected in cells
transfected with targeting shRNA compared
with control cells with an empty vector (figure
2A). Knocking down PECAM-1 also resulted in a
60% reduction in MDR1 expression compared
with vector control cells (figure 2B). In
accordance with the mRNA levels, the Western
blot assay demonstrated that PECAM-1 shRNA
resulted in nearly an 80% reduction in the
PECAM-1 level compared with vector control
cells (figure 2C), which was accompanied by a
similar amount of reduction in the P-gp protein
level compared with control cells (figure 2D).
Together, these results suggested a role of
PECAM-1 in controlling MDR1 and P-gp
expression in tumor cells after ionizing
irradiation.
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Figure 1. Correlated upregulation of MDR1 and P-gp
expression with PECAM-1 in CNE1 cells after ionizing
irradiation. (A) MDR1 and PECAM-1 mRNA expression
detected with conventional RT-PCR in CNE1 (nonirradiated
parental cells) and CNE1/R (irradiated subline). (A) Top panel
shows a representative image of agarose electrophoresis, and
low panel deciphers the semi-quantitative result of
densitometry analysis of three independent assays. (B) Protein
levels of P-gp and PECAM-1 assessed by Western blot analysis.
The top panel shows a representative image, and the low
panel shows summarized densitometry analysis based on
three assays. *Indicates P <0.05; **indicates P <0.01
compared with CNE1 cells.
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Figure 2. Knockdown of PECAM-1 resulted in reduced
expression of MDR1 and P-gp. (A and B) Relative mRNA
expression of PECAM-1 and MDR1 in CNE1/R cells stably

transfected with either pSilencer empty vector or plasmid
harboring PECAM-1shRNA. The mRMA level was determined
with quantitative RT-PCR. (C and D) Expression of PECAM-1
and P-gp protein in CNE1/R cells treated as described in (A)
and (B). The top panel shows the representative photos of
Western blots, and the low panel illustrates the summarized
densitometry analysis based on three assays.
**Indicates P<0.01, compared with vector control cells.

Knocking down PECAM-1 increased the
sensitivity of CNE1/R cells to cisplatin in-vitro
Considering the close relationship between
PECAM-1 and MDR1, the study next determined
whether knocking down PECAM-1 could
sensitize CNE1/R cells to cisplatin treatment.
The ICso dosage of cisplatin in CNE1/R cells with
or without PECAM-1 shRNA was determined.
The MTT assay showed that expression of
PECAM-1 shRNA increased the sensitivity of
CNE1/R cells to cisplatin-mediated growth
inhibition, which was evidenced by the
reduction in ICso from 0.643+0.037 pg/mL in
cells with control plasmid down to 0.296+0.008
pg/mL in cells with PECAM-1 shRNA (P<0.05).
Furthermore, the frequency of apoptotic cells
after silencing PECAM-1 also increased
compared with that in control cells (figure 3A
and 3B). Collectively, these data indicated a
major role of PECAM-1 in determining the
anti-tumor effect of cisplatin on tumor cells
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subjected to ionizing radiation.
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Figure 3. Silencing PECAM-1 sensitized CNE1/R cells to
cisplatin-mediated apoptosis. CNE1/R cells stably transfected
with a PECAM-1 shRNA plasmid or an empty vector were
treated with indicated doses of cisplatin for 48 h. (A) A
representative profile of Annexin V=FITC/PI double staining
and FACS analysis. (B) Summarized frequencies of apoptotic
cells treated with different doses of cisplatin based on three
independent experiments. *Indicates P <0.05, compared with
vector control cells.

Targeting PECAM-1 enhanced cisplatin-
induced tumor regression in xenograft mouse
models

Xenograft mouse models were created by
subcutaneously inoculating CNE1/R cells stably
transfected with PECAM-1 shRNA plasmid,
empty plasmid (vector control), or transfection
reagent only (nontransfection control) to
further validate the effect of targeting PECAM-1
on CNE1/R cells in an in-vivo setting. After tumor
formation, the mice in each group were treated
with either cisplatin or PBS for 4 weeks. As
shown in figure 4A and 4B, tumors derived from
nontransfected and vector control CNE1/R cells
displayed an aggressive growth revealed by
large gross tumor size and tumor weights
(1.52+0.10 g and 1.40%0.04 g, respectively) in
the absence of cisplatin. In contrast, tumors
derived from CNE1/R cells carrying PECAM-1
shRNA exhibited smaller tumor size and
reduced tumor weight (0.68+0.03 g) compared
with those found in the other two groups,
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implying that targeting PECAM-1 alone retarded
tumor growth.

Cisplatin treatment inhibited tumor growth
in mice from all three groups; the most
prominent tumor regression by cisplatin
treatment was found in tumors derived from
CNE1/R cells carrying PECAM-1 shRNA. As
shown in figure 4B, the average tumor weight in
the group with PECAM-1 shRNA was 0.25+0.04 g
in the presence of cisplatin, which was much less
than that found in either the vector control
group (0.99+0.17 g) or the nontransfected group
(1.04+0.09 g).
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Figure 4. Silencing PECAM-1 inhibited tumor growth and
enhanced the efficacy of cisplatin treatment in xenograft
mouse models. Xenograft mouse models were established by
subcutaneously inoculating CNE1/R cells with no transfection
or stably transfected with an empty vector or PECAM-1 shRNA
plasmids. (A) Image shows the gross appearance of excised
tumors from each indicated group of animals treated with
either cisplatin or saline. (B) Comparison of average tumor
weight among indicated groups. *Indicates P <0.05, **P <0.01,
compared with the two indicated control groups.

Tumor regression correlated with the
diminished level of PECAM-1 and P-gp
proteins

Immunohistochemical staining was
performed using tumor tissues from all three
groups described earlier to confirm the
relevance of tumor regression to diminished
PECAM-1 and P-gp levels. As shown in Figure
5A, tumors from both no-transfection and vector
control groups exhibited the positive staining of
PECAM-1 and P-gp proteins, revealed by dark
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brown labeling in the cytoplasm and on the cell
membrane of tumor cells. In contrast, tumors
with PECAM-1 shRNA displayed much weaker
staining for both PECAM-1 and P-gp proteins.
The protein levels of PECAM-1 and P-gp were
also examined by Western blot analysis with
proteins extracted from tumor tissues.
Densitometry analysis of the blots showed that
tumors with PECAM-1 shRNA expressed nearly
80% reduction in the levels of both PECAM-1
and P-gp compared with that in tumors from
cells with either control plasmid or no
transfection (figure 5B), thus further supporting
the role of PECAM-1 in controlling P-gp
expression and indicating that tumor regression
had prominent relevance to PECAM-1 inhibition.
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% /4:;,;5%}? 7 B
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B PECAM-1 No Vector
shRNA transfection control 44 a PECAM-1
12 P-
3
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coor [ o N Ve

shRNA transfection control

Figure 5. Expression of PECAM-1 and P-gp in tumor tissues of
xenograft mouse models. (A) Representative photos (200x
magnification) show the pattern of immunohistochemical
staining with a specific antibody against human PECAM-1 or
P-gp proteins. Paraffin-embedded slides were prepared with
tumor tissues from three indicated groups without cisplatin
treatment. Target protein expression was revealed by dark
brown labeling. (B) The left panel shows a representative
image of Western blot determining PECAM-1 and P-gp levels
using protein extracted from tumor tissues in indicated
groups; the right panel depicts the densitometric analysis.

DISCUSSION

The present study extended previous
observations by showing that an increased
PECAM-1 level was involved in controlling

Int. J. Radiat. Res., Vol. 19 No. 3, July 2021

Xie et al. / PECAM-1 regulates MDR1

MDR1 and P-gp expression, thus playing a
critical role in the acquisition of drug resistance
by CNE1 cells subjected to ionizing radiation.
This study also demonstrated that silencing
PECAM-1 expression increased the sensitivity of
irradiated CNE1 cells to cisplatin-mediated cell
death and tumor regression.

The frequency of PECAM-1 expression on
solid tumor cells was relatively low compared
with cells from hematopoietic lineages. Using RT
-PCR and Western blot analysis, low but
detectable levels of both PECAM-1 mRNA and
protein were observed in the nonirradiated
CNE1 cell line. This phenomenon was not a
surprise because cell lines from epithelial
tissues, including head and neck squamous
carcinoma, cervical carcinoma, and breast
carcinoma, have been reported to express
PECAM-1 mRNA and protein (15). The expression
of both PECAM-1 transcript and protein was
significantly = upregulated by fractionated
ionizing irradiation, indicating that an increased
PECAM-1 level might serve as a new biomarker
of tumor cells undergoing stress induced by
ionizing irradiation.

Increased expression of MDR1 and P-gp is
one of the most prominent phenotypes shared
by many tumor cells with intrinsic or acquired
drug resistance (22.23), The fact that ionizing
radiation enhances MDR1 and P-gp expression
has also been documented by several reports
including the present study (5.7). The data from
this study confirmed the correlation between
the expression levels of PECAM-1 and MDR1,
indicating cooperation between these molecules
in determining the drug resistance of tumor cells
following exposure to ionizing radiation.
Silencing PECAM-1 by specific shRNA in
irradiated CNE1 cells also abridged the
expression of MDR1 transcript and P-gp protein,
highlighting that PECAM-1 might serve as an
upstream regulator of MDR1. This is the first
evidence implicating the role of PECAM-1 in
controlling MDR1 expression in tumor cells after
radiotherapy.

The detailed signaling pathways by which
PECAM-1 affected MDR1 expression were not
elucidated in the present study. However, it was
considered that PECAM-1 regulated MDR1 most
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likely in an indirect way, given the fact that
PECAM-1 itself is not a transcription factor, and
that PECAM-1 ligation can engage multiple
signaling pathways. Several transcription factors
and kinases, such as p53, NF-kB, and PI3K/Akt
signaling axis, have been reported to control
MDR1 expression (24-26), The signals emanated
from PECAM-1 ligation can directly or indirectly
activate NF-kB and Akt signaling pathway ). As
a result, these events may contribute to the
enhancement of MDR1 transcription and P-gp
protein synthesis. The treatment of irradiated
CNE1 cells with LY294002, a potent PI3K
inhibitor, resulted in a concurrent reduction in
the levels of phosphorylated Akt and P-gp
protein (unpublished data). Nevertheless, other
complex interactions between PECAM-1 and
MDR1 may also exist, which need further
exploration.

The evidence from this study supported the
critical role of PECAM-1 in tumor cell survival.
PECAM-1 shRNA treatment inhibited CNE1 cell
proliferation and increased the sensitivity of
irradiated CNE1 cells to cisplatin in-vitro. This
evidence was further corroborated by the
in-vivo study using xenograft mouse models by
inoculating CNE1/R cells carrying PECAM-1
shRNA followed by cisplatin treatment.
Collectively, these results suggested that PECAM
-1 might be an attractive target for cancer
therapy and an important regulator in
determining drug resistance of tumor cells after
ionizing irradiation. This notion was also
supported by recent studies showing that the
growth of mantle cell lymphoma in a xenograft
model was associated with upregulated
PECAM-1 expression 27 and that PECAM-1
siRNA inhibited tumor growth in a lung
carcinoma xenograft model (28). [t was assumed
that reduced PECAM-1 expression might
attenuate the activities of several pro-survival
pathways involving PECAM-1  signaling
complexes, such as Bcl-2 family proteins, PI3K/
Akt, pathway, and NF-kB activity.

In summary, the present study indicated that
increased expression of PECAM-1 contributed to
the acquisition of multidrug resistance in CNE1
tumor cells after ionizing irradiation by
upregulating MDR1 expression. Targeting
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PECAM-1 could effectively sensitize CNE1 tumor
cells subjected to ionizing radiation to cisplatin
treatment both in-vitro and in-vivo. These
findings provided new insight into the
mechanisms by which fractionated irradiation
induced multiple drug resistance in tumor cells.
They suggested that targeting PECAM-1 might
be a novel strategy overcoming ionizing
irradiation-associated drug resistance for
clinical benefits.
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